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MRCET VISION 
 
 

 

• To become a model institution in the fields of Engineering, Technology and 

Management. 

 
• To have a perfect synchronization of the ideologies of MRCET with challenging 

demands of International Pioneering Organizations. 

 
 

MRCET MISSION 
 
 

 

To establish a pedestal for the integral innovation, team spirit, originality and 

competence in the students, expose them to face the global challenges and become 

pioneers of Indian vision of modern society. 

 
 

MRCET QUALITY POLICY. 
 
 

 

• To pursue continual improvement of teaching learning process of Undergraduate and 

Post Graduate programs in Engineering & Management vigorously. 

 
• To provide state of art infrastructure and expertise to impart the quality education. 
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PROGRAM OUTCOMES 
 

(PO’s)  
Engineering Graduates will be able to: 

 
1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering 
problems. 

 

2. Problem analysis: Identify, formulate, review research literature, and analyze complex 
engineering problems reaching substantiated conclusions using first principles of 
mathematics, natural sciences, and engineering sciences. 

 

3. Design / development of solutions: Design solutions for complex engineering problems 
and design system components or processes that meet the specified needs with 
appropriate consideration for the public health and safety, and the cultural, societal, 
and environmental considerations. 

 

4. Conduct investigations of complex problems: Use research-based knowledge and 
research methods including design of experiments, analysis and interpretation of data, 
and synthesis of the information to provide valid conclusions. 

 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and 
modern engineering and IT tools including prediction and modeling to complex 
engineering activities with an understanding of the limitations. 

 

6. The engineer and society: Apply reasoning informed by the contextual knowledge to 
assess societal, health, safety, legal and cultural issues and the consequent 
responsibilities relevant to the professional engineering practice. 

 

7. Environment and sustainability: Understand the impact of the professional engineering 
solutions in societal and environmental contexts, and demonstrate the knowledge of, 
and need for sustainable development. 

 

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities 
and norms of the engineering practice. 

 

9. Individual and team work: Function effectively as an individual, and as a member or 
leader in diverse teams, and in multidisciplinary settings. 

 

10. Communication: Communicate effectively on complex engineering activities with the 
engineering community and with society at large, such as, being able to comprehend 

and write effective reports and design documentation, make effective presentations, 
and give and receive clear instructions. 

 

11. Project management and finance: Demonstrate knowledge and understanding of the 
engineering and management principles and apply these to one͛s own work, as a 
member and leader in a team, to manage projects and in multi disciplinary 
environments. 

 

12. Life- long learning: Recognize the need for, and have the preparation and ability to 
engage in independent and life-long learning in the broadest context of technological 
change.  
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DEPARTMENT OF AERONAUTICAL ENGINEERING 
 

VISION 

 

Department of Aeronautical Engineering aims to be indispensable source in Aeronautical 

Engineering which has a zeal to provide the value driven platform for the students to 

acquire knowledge and empower themselves to shoulder higher responsibility in building 

a strong nation.  
 

MISSION 

 

The primary mission of the department is to promote engineering education and research. 

To strive consistently to provide quality education, keeping in pace with time and 

technology. Department passions to integrate the intellectual, spiritual, ethical and social 

development of the students for shaping them into dynamic engineers. 
 
 

 

QUALITY POLICY STATEMENT 

 

Impart up-to-date knowledge to the students in Aeronautical area to make them quality 

engineers. Make the students experience the applications on quality equipment and tools. 

Provide systems, resources and training opportunities to achieve continuous 

improvement. Maintain global standards in education, training and services. 
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PROGRAM EDUCATIONAL OBJECTIVES – Aeronautical Engineering 
 

1. PEO1 (PROFESSIONALISM & CITIZENSHIP): To create and sustain a community of 
learning in which students acquire knowledge and learn to apply it professionally with 
due consideration for ethical, ecological and economic issues. 

 
2. PEO2 (TECHNICAL ACCOMPLISHMENTS): To provide knowledge based services to satisfy 

the needs of society and the industry by providing hands on experience in various 
technologies in core field. 

 
3. PEO3 (INVENTION, INNOVATION AND CREATIVITY): To make the students to design, 

experiment, analyze, and interpret in the core field with the help of other multi 
disciplinary concepts wherever applicable. 

 
4. PEO4 (PROFESSIONAL DEVELOPMENT): To educate the students to disseminate 

research findings with good soft skills and become a successful entrepreneur. 
 

5. PEO5 (HUMAN RESOURCE DEVELOPMENT): To graduate the students in building 
national capabilities in technology, education and research  

 
 

 

PROGRAM SPECIFIC OUTCOMES – Aeronautical Engineering 
 

1. To mould students to become a professional with all necessary skills, personality and 
sound knowledge in basic and advance technological areas. 

 
2. To promote understanding of concepts and develop ability in design manufacture and 

maintenance of aircraft, aerospace vehicles and associated equipment and develop 

application capability of the concepts sciences to engineering design and processes. 
 

3. Understanding the current scenario in the field of aeronautics and acquire ability to 

apply knowledge of engineering, science and mathematics to design and conduct 

experiments in the field of Aeronautical Engineering. 
 

4. To develop leadership skills in our students necessary to shape the social, intellectual, 

business and technical worlds.  
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MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 
       

 

IV Year B. Tech, ANE-I Sem 

 

         (R15A2119)COMPUTATIONAL AERODYNAMICS 
 

Objectives: 

 Application of CFD to various engineering problems. 

 Understand the physics of mathematical equations governing aerodynamic flows. 

 Numerical methods to solve fluid flow problems 

 

UNIT-I - INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS  

CFD – Why Computational Fluid Dynamics? What is CFD? CFD - Research tool – Design Tool, Application of CFD to 

various Engineering problems. Models of fluid flow- Finite Control Volume, Infinitesimal Fluid Element. substantial 

derivatives, divergence of Velocity. 

 

UNIT-II - GOVERNING EQUATIONS OF FLUID DYNAMICS 

The continuity equation, the momentum equation, the energy equation, physical boundary conditions. Form of 

Governing equation suited for CFD - Conservation form - shock fitting and shock capturing.impact of partial 

differential eqautions on CFD. Classification of Quasi-Linear Partial differential equation, The Eigen value method, 

General behavior of different classes of Partial differential equation – elliptic, parabolic and hyperbolic. 

 

UNIT-III – DISCRETIZATION TECHNIQUES 

Introduction, Finite differences and formulas for first and second derivatives, difference equations, Explicit and 

implicit approaches, multidimensional finite difference formulas, finite difference formulas on non-uniform grids. 

Basis of finite volume method- conditions on the finite volume selections- approaches - Cell-centered and cell-

vertex Definition of finite volume discretization general formulation of a numerical scheme- Two dimensional finite 

volume method with example. 

 

UNIT-IV - GRID GENERATION 

Need for grid generation. Structured grids- Cartesian grids, stretched (compressed) grids, body fitted structured 

grids, Multi-block grids - overset grids with applications. 

Unstructured grids- triangular/ tetrahedral cells, hybrid grids, quadrilateral/hexahedra cells.  Grid Generation 

techniques - Delaunay triangulation, Advance font method. Surface and volume estimations, grid quality and best 

practice guidelines. 

 

UNIT-V – CFD TECHNIQUES 

Lax-Wendroff technique, MacCormack͛s technique, Crank Nicholson technique, Relaxation technique- aspects of 

numerical dissipation and dispersion, Alternating-Direction-Implicit (ADI) Technique. Pressure correction technique 

Numerical procedures- SIMPLE, SIMPLER algorithms SIMPLEC and PISO algorithms Boundary conditions for the 

pressure correction method. Parallel Computing. 

 

Text Books: 

1. John .D. Anderson ͞Computational Fluid Dynamics͟, McGraw Hill 

2. Charles Hirsch ͞Numerical computation of internal and external flows͟ Second Edition 

Butterworth-Heinemann is an imprint of Elsevier 

 

Reference Books: 

1. Hoffmann, K.A: Computational Fluid Dynamics for Engineers, Engineering Education System, 

Austin, Tex., 1989 

2. J Blazek ͞Computational Fluid Dynamics: Principles and Applications͟ Elsevier. 

L T/P/D C 

5 1/-/- 4 
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3. Introduction to Computational Fluid Dynamics, Chow CY, John Wiley, 1979 

 

Outcomes: 

 Solve differential equations governing fluid flow problems. 

 Generation of grid according to geometry of flow. 

 Application of CFD techniques for aerospace problems. 
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UNIT-I 

INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS 
 

What is CFD? CFD - Research tool – Design Tool 

CFD – Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data 

structures to solve and analyze problems that involve fluid flows. Computers are used to perform the calculations 

required to simulate the interaction of liquids and gases with surfaces defined by boundary conditions. With high-

speed supercomputers, better solutions can be achieved. Ongoing research yields software that improves the 

accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial experimental 

validation of such software is performed using a wind tunnel with the final validation coming in full-scale testing, 

e.g. flight tests. 

 

Why Computational Fluid Dynamics?  

Analysis and Design Simulation-based design instead of ͞build & test͟  

More cost effective and more rapid than EFD 

 CFD provides high-fidelity database for diagnosing 

flow field Simulation of physical fluid phenomena that are difficult for experiments  Full scale simulations (e.g., 

ships and airplanes) 

 Environmental effects (wind, weather, etc.) 

 Hazards (e.g., explosions, radiation, pollution) 

 Physics (e.g., planetary boundary layer, stellar evolution)  

 Knowledge and exploration of flow physics 

 

Application of CFD to various Engineering problems 

CFD is useful in a wide variety of applications and here we note a few to give you an idea of its use in industry. 

The simulations shown below have been performed using the FLUENT software. CFD can be used to simulate 

the flow over a vehicle. For instance, it can be used to study the interaction of propellers or rotors with the 

aircraft fuselage. The following figure shows the prediction of the pressure field induced by the interaction of 

the rotor with a helicopter fuselage in forward flight. Rotors and propellers can be represented with models 

of varying complexity. 

 

 

https://en.wikipedia.org/wiki/Fluid_mechanics
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Boundary_value_problem#Boundary_value_conditions
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Transonic
https://en.wikipedia.org/wiki/Turbulence
https://en.wikipedia.org/wiki/Wind_tunnel
https://en.wikipedia.org/wiki/Flight_test
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The temperature distribution obtained from a CFD analysis of a mixing manifold is shown below. This mixing 

manifold is part of the passenger cabin ventilation system on the Boeing 767. The CFD analysis showed the 

effectiveness of a simpler manifold design without the need for field testing. 

 

Bio-medical engineering is a rapidly growing field and uses CFD to study the circulatory and respiratory 

systems. The following figure shows pressure contours and a cutaway view that reveals velocity vectors in a 

blood pump that assumes the role of heart in open-heart surgery. 

 

CFD is attractive to industry since it is more cost-effective than physical testing. However, one must 

note that complex flow simulations are challenging and error- prone and it takes a lot of engineering 

expertise to obtain validated solutions. 

 

Models of fluid flow- Finite Control Volume,  

 

A control volume is a mathematical abstraction employed in the process of creating mathematical models of 

physical processes. In an inertial frame of reference, it is a volume fixed in space or moving with constant flow 

velocity through which the continuum (gas, liquid or solid) flows. The surface enclosing the control volume is 

referred to as the control surface. 

 

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Inertial_frame_of_reference
https://en.wikipedia.org/wiki/Flow_velocity
https://en.wikipedia.org/wiki/Flow_velocity
https://en.wikipedia.org/wiki/Gas
https://en.wikipedia.org/wiki/Liquid
https://en.wikipedia.org/wiki/Solid
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Infinitesimal Fluid Element.  

 

Substantial derivative  

 

The substantial derivative has a physical meaning: the rate of change of a quantity (mass, energy, momentum) as 

experienced by an observer that is moving along with the flow. The observations made by a moving observer are 

affected by the stationary time-rate-of-ĐhaŶge of the pƌopeƌtǇ ;∂f/∂tͿ, ďut ǁhat is oďseƌǀed also depeŶds oŶ ǁheƌe 
the observer goes as it floats along with the flow (v · ∇f). If the flow takes the observer into a region where, for 

example, the local energy is higher, then the observed amount of energy will be higher due to this change in 

location. The rate of change from the point of view of an observer floating along with a flow appears naturally in 

the equations of change. 

V=ui+vj+wk 

Where the x,y,z components of velocity are given as 

u=u(x,y,z,t) 

v=v(x,y,z,t) 

w=w(x,y,z,t) 

Thus it is unsteady flow where u,v,w are functions of space and time. Similarly consider density ρ= ρ;ǆ,Ǉ,z,tͿ 

 
At time t1, the fluid element is located at point 1 and later it is moved to point 2 in time t2. 

Expanding density by using taylor series about point 1 as follows: 
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Heƌe Dρ/Dt is a sǇŵďol foƌ the iŶstaŶtaŶeous tiŵe ƌate of ĐhaŶge of deŶsity of the fluid element as it moves 

through point 1 whch is also called as substantial derivative. 

 
 

 
 

 

 
 

 

 
 

Divergence of Velocity  
Physically it is the time rate of change of the volume of a moving fluid element per unit volume. 
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UNIT-II 

GOVERNING EQUATIONS OF FLUID DYNAMICS 
The continuity equation, the momentum equation, the energy equation 
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physical boundary conditions 
 

 The near wall flow is considered as laminar and the velocity varies linearly with distance from the 

wall 

 No slip condition: u = v = 0. 

 The velocity is constant along parallel to the wall and varies only in the direction normal to the 

wall. 

 No pressure gradients in the flow direction. 

Types of boundary conditions: In general, boundary conditions for any PDE can be classified into 4 major 

categories: 

Dirichlet boundary condition: - in which the dependent variables themselves are prescribed along the domain 

boundary. 2) Von Neumann boundary condition: - in which the normal gradient of the dependent variables is 

prescribed along the boundary. 3) Robin boundary condition: - in which the boundary conditions are a linear 

combination of the Dirichlet and Von Neumann type. 4) Mixed boundary conditions: - in which certain portions of 

the boundary are defined as Dirichlet type, while others as Von Neumann type. 

 

 Shock fitting and shock capturing 
In computational fluid dynamics, shock-capturing methods are a class of techniques for computing inviscid 

flows with shock waves. The computation of flow containing shock waves is an extremely difficult task because 

such flows result in sharp, discontinuous changes in flow variables such as pressure, temperature, density, and 

https://en.wikipedia.org/wiki/Laminar_flow
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Inviscid_flow
https://en.wikipedia.org/wiki/Inviscid_flow
https://en.wikipedia.org/wiki/Shock_wave
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velocity across the shock. In shock-capturing methods, the governing equations of inviscid flows (i.e. Euler 

equations) are cast in conservation form and any shock waves or discontinuities are computed as part of the 

solution. Here, no special treatment is employed to take care of the shocks themselves, which is in contrast to the 

shock-fitting method, where shock waves are explicitly introduced in the solution using appropriate shock relations 

(Rankine–Hugoniot relations). The shock waves predicted by shock-capturing methods are generally not sharp and 

may be smeared over several grid elements. Also, classical shock-capturing methods have the disadvantage that 

unphysical oscillations (Gibbs phenomenon) may develop near strong shocks. 

 

Impact of partial differential eqautions on CFD.  
 

 

 
 

Classification of Quasi-Linear Partial differential equation,  
 

In CFD applications, computational schemes and specification of boundary conditions depend on the types of 

PARTIAL DIFFERENTIAL EQUATIONS. In many cases, the governing equations in fluids and heat transfer are of mixed 

types. For this reason, selection of computational schemes and methods to apply boundary conditions are 

important subjects in CFD. 

Description 

Partial differential equations (PDEs) in general, or the governing equations in fluid dynamics in particular, are 

classified into three categories: 

(1) elliptic 

(2) parabolic 

(3) hyperbolic 

Consider a system of quasi linear equations given below 

  
Where u and  

 

https://en.wikipedia.org/wiki/Euler_equations_(fluid_dynamics)
https://en.wikipedia.org/wiki/Euler_equations_(fluid_dynamics)
https://en.wikipedia.org/wiki/Rankine%E2%80%93Hugoniot_relation
https://en.wikipedia.org/wiki/Gibbs_phenomenon
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Solve the above matrix for unknown like ∂u/∂ǆ usiŶg Đƌaŵeƌ͛s rule. So, replacing first column of matrix [A] with 

constants column vector defining new mareix [B] 

 

 
Cƌaŵeƌs ƌules giǀe the solutioŶ foƌ ∂u/∂ǆas 

 

 

 

 

 

 

 

 

 
Elliptic Equations 

 

 A PDE is elliptic in a region if (b
2
 – 4ac < 0) at all points of the region. 

 An elliptic PDE has no real characteristics but only imaginary/complex characteristics. 
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 A disturbance is propagated instantly in all directions within the region. 

 Examples of Elliptic PDEs are Laplace equation and Poisson equation. 

 The domain of solution for an elliptic PDE is a closed Region R. 

 

 Boundary value problem: Only boundary conditions are required to get the solution of elliptic equation. 

 Steady state temperature distribution of a insulated solid rod. 

     2. Parabolic Equations 

 A PDE is parabolic in a region if (b
2
 – 4ac = 0) at all points of the region. 

 Time dependent problem: Example of parabolic PDEs is unsteady heat diffusion equation. 

 

 Marching type problem: The domain of solution for an parabolic PDE is an open Region. 

 

 Initial-Boundary value problems: Initial condition and two boundary conditions are required. 

 Examples: Boundary layers, jets, mixing layers, wakes, fully developed duct flows. 

     3.  Hyperbolic Equations 

 A PDE is hyperbolic in a region if (b
2
 – 4ac> 0) at all points of the region. 
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 Example of hyperbolic PDEs is wave equation. 

 

 The domain of solution for an parabolic PDE is an open Region. 

 

 Initial boundary value problem: Two Initial conditions and two boundary conditions are required. 

 Solution may be discontinuous (shock waves) : steady/unsteady compressible flows at supersonic speeds. 

 Method of Characteristics: A classical method to solve hyperbolic equations with two independent 

variables: Applicable to two-dimensional, steady, isentropic, adiabatic, irrotational flow of a perfect gas. 

Physical Interpretation 

 Consider the flow of a body having velocity u in a quiescent fluid. 

 The movement of this body disturbs the fluid particles ahead of the body. 

 The propagation speed of disturbance would be equal to speed of sound, a. 

 The ratio of the speed of body to the speed of sound is called Mach number M=u/a. 

 Consider the steady two-dimensional velocity potential equation: 

 

 There are three types of PDEs for the three types of flows. 

1 Elliptic PDEs: Subsonic(M < 0). 

2 Parabolic PDEs: Sonic(M = 0). 

3 Hyperbolic PDEs: Supersonic(M > 0). 

  

The physical situations these types of equations represent can be illustrated by the flow velocity relative to the 

speed of sound as shown in Figure 2.1.1. Consider that the flow velocity u is the velocity of a body moving in the 

quiescent fluid.The movement of this body disturbs the fluid particles ahead of the body, setting off the 
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propagation velocity equal to the speed of sound a. The ratio of these two competing speeds is defined as Mach 

number, M=u/a. 

For subsonic speed, M < 1, as time t increases, the body moves a distance, ut, which is always shorter than the 

distance at of the sound wave (Figure 2.1.1a). The sound wave reaches the observer, prior to the arrival of the 

body, thus warning the observer that an object is approaching. The zones outside and inside of the circles are 

known as the zone of silence and zone of action, respectively. 

If, on the other hand, the body travels at the speed of sound, M = 1, then the observer does not hear the body 

approaching him prior to the arrival of the body, as these two actions are simultaneous (Figure 2.1.lb). All circles 

representing the distance traveled by the sound wave are tangent to the vertical line at the position of the 

observer. For supersonic speed, M > 1, the velocity of the body is faster than the speed of sound (Figure 2.1.1c). 

The line tangent to the circles of the speed of sound, known as a Mach wave, forms the boundary between the 

zones of silence (outside) and action (inside). Only after the body has passed by does the observer become aware 

of it. 
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The governing equations for subsonic flow, transonic flow, and supersonic flow are classified as elliptic, parabolic, 

and hyperbolic, respectively. We shall elaborate on these equations below. Most of the governing equations in fluid 

dynamics are second order partial differential equations. For generality, let us consider the partial differential 

equation of the form [Sneddon, 1957] in a two-dimensional domain. 

 
Where the coefficients A, B, C, D, E, and F are constants or may be functions of both independent and/or 

dependent variables. To assure the continuity of the first derivative of u, ux = ∂u/∂ǆ and uǇ=∂u/∂Ǉ. We write 

https://i1.wp.com/www.mechlectures.com/wp-content/uploads/2017/07/pic-2.png
https://i1.wp.com/www.mechlectures.com/wp-content/uploads/2017/07/pic-2.png
https://i0.wp.com/www.mechlectures.com/wp-content/uploads/2017/07/pic-1.png
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Since it is possible to have discontinuities in the second order derivatives of the dependent variable along the 

characteristics, these derivatives are indeterminate. 

 

 

 
This happens when the determinant of the coefficient matrix in (2.1.3) is equal to zero. 

https://i1.wp.com/www.mechlectures.com/wp-content/uploads/2017/07/pic-3.png
https://i1.wp.com/www.mechlectures.com/wp-content/uploads/2017/07/pic-3.png
https://i0.wp.com/www.mechlectures.com/wp-content/uploads/2017/07/pic-4.png
https://i0.wp.com/www.mechlectures.com/wp-content/uploads/2017/07/pic-4.png
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Depending on the value of B

2
 – 4AC, characteristic curves can be real or imaginary. 

For problems in which real characteristics exist, a disturbance propagates only over a finite region (Figure 2.1.2). 

The downstream region affected by this disturbance at point A is called the zone of influence. A signal at point A 

will be felt only if it originates from a finite region called the zone of dependence of point A. 

The second order PDE is classified according to the sign of the expression ( B
2
 – 4AC). 

(a) Elliptic if B
2
 – 4AC < 0 

In this case, the characteristics do not exist. 

(b) Parabolic if B
2
 – 4AC = 0 

In this case, one set of characteristics exists. 

(c) Hyperbolic if B
2
 – 4AC > 0 

In this case, two sets of characteristics exist. 

  

Note that (2.1.1) resembles the general expression of a conic section, 

AX
2
 + BXY+ CY

2
 + DX+ EY+ F = 0                                 (2.1.8) 

in which one can identify the following geometrical properties: 

B
2
 – 4AC < 0 ellipse 

B
2
 – 4AC = 0 parabola 

B
2– 4AC > 0 hyperbola 

This is the origin of terms used for classification of partial differential equations. 

https://i1.wp.com/www.mechlectures.com/wp-content/uploads/2017/07/pic-5.png
https://i1.wp.com/www.mechlectures.com/wp-content/uploads/2017/07/pic-5.png
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The Eigen value method, General behavior of different classes of Partial differential equation – elliptic, parabolic 

and hyperbolic. 

 

 

 

 
 

 

 
 

https://i2.wp.com/www.mechlectures.com/wp-content/uploads/2017/07/pic-6.png
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If the eigen values are all real, the equations are hyperbolic. 

If the eigen values are all complex the equations are elliptic or else they are parabolic. 

 

 

WELL POSED PROBLEMS 
 

The mathematical term well-posed problem stems from a definition given by Jacques Hadamard. He 

believed that mathematical models of physical phenomena should have the properties that: 

1. a solution exists, 

2. the solution is unique, 

3. the solution's behavior changes continuously with the initial conditions. 

 

If the problem is well-posed, then it stands a good chance of solution on a computer using a stable 

algorithm. If it is not well-posed, it needs to be re-formulated for numerical treatment. Typically this 

involves including additional assumptions, such as smoothness of solution. 
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UNIT-III – DISCRETIZATION TECHNIQUES 
Introduction, Finite differences  
In mathematics, finite-difference methods (FDM) are numerical methods for solving differential equations by 

approximating them with difference equations, in which finite differences approximate the derivatives. FDMs are 

thus discretization methods. 

 

 Formulas for first and second derivatives 

 
First, assuming the function whose derivatives are to be approximated is properly-behaved, by Taylor's theorem, 

we can create a Taylor series expansion 

If ui,j denotes velocity at point (I,j) then the velocity ui+1,j at point (i+1,j) can be expressed in terms of Taylor series 

expanded about point (I,j) as follows: 

 

 

Solving above equation for derivative gives 

 

 

The loǁest oƌdeƌ teƌŵ iŶ tƌuŶĐatioŶ eƌƌoƌ iŶǀolǀes ∆ǆ to the first power; hence the finite difference expression  

 

Is Đalled fiƌst oƌdeƌ aĐĐuƌate aŶd the sǇŵďol O;∆ǆͿ is a foƌŵal ŵatheŵatiĐal ŶotatioŶ ǁhiĐh ƌepƌeseŶts teƌŵs of 

oƌdeƌ  ∆ǆ. The aďoǀe eƋuatioŶ uses iŶfoƌŵatioŶ to the ƌight of gƌid poiŶt ;i,jͿ i.e it uses ui+1,j and ui,j. As a result it is 

known as first order forward difference. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Numerical_methods
https://en.wikipedia.org/wiki/Differential_equations
https://en.wikipedia.org/wiki/Recurrence_relation#Relationship_to_difference_equations_narrowly_defined
https://en.wikipedia.org/wiki/Finite_difference_approximation
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Discretization
https://en.wikipedia.org/wiki/Taylor%27s_theorem
https://en.wikipedia.org/wiki/Taylor_series
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The above equation uses information to the left of grid point (i,j) i.e it uses u i-1,j and ui,j. As a result it is known as 

first order backward or rearward difference 

 

In most CFD applications first order accuracy is not sufficient second order difference are obtained by subtract 

forward and backward differences as follows: 

 

 
The lowest order term in truncation error involves ∆x to the first power; hence the finite difference expression is of 

second order. The above equation uses information to the left and right of grid point (i,j) i.e it uses u i+1,j , ui-1,j and 

ui,j. As a result it is known as second order central difference. 

Similarly the finite differences for y derivatives are given as 
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These are examples of second derivative finite differences are known as second differences. 

 

For mixed derivatives 

 

 

 

 
 

Subtracting above two equations 

 

 
 

 

 
 

 
This known as second order central difference for mixed derivative. 
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Difference equations  
When all the partial derivatives in agiven PDE are replaced by finite difference the algebraic equation is known as 

difference equation. 

 

Consider a one dimensional heat conduction equation with constant thermal diffusivity 

 

 
This equation is parabolic in nature. So we use marching solution with respect to time. Here time is representd by 

prefix n to grid point. 
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The above equation is known as difference equation for one dimensional heat conduction governing equation. 

 

Explicit and implicit approaches 

 

Consider the same 1D heat conduction equation 

 

 
With some rearrangements of above equation gives 

 

 
 

 
In the above equation left hand side is unkown and all the right side terms in n level are known 

by boundary conditions. Thus by marching in time direction with varying n levels as shown in 

above figure the solution is obtained . 
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Similarly we can get for T

n+4
, T

n+5
 and T

n+6
 . As these equations are solving for only one single unknown then it is 

known as explicit method. 

 

For a given PDE we can write n number of difference equations with various methods like the following 

 

 
The above finite difference method is known as Crank Nicholoson form. 

 

In the above both left and right handside terms are unknowns i.e. n+1 level terms. So to obtain the solution for  a 

equation with more than one unknown it requires equations equal to number of unknowns. Thus solving 

simulkataneous euqtions or unknowns is known as implicit method. 
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 Basis of finite volume method-  

The finite volume method (FVM) is a method for representing and evaluating partial differential equations in the 

form of algebraic equations [LeVeque, 2002; Toro, 1999]. Similar to the finite difference method or finite element 

method, values are calculated at discrete places on a meshed geometry. "Finite volume" refers to the small volume 

surrounding each node point on a mesh. In the finite volume method, volume integrals in a partial differential 

equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These 

terms are then evaluated as fluxes at the surfaces of each finite volume. Because the flux entering a given volume is 

identical to that leaving the adjacent volume, these methods are conservative. Another advantage of the finite 

volume method is that it is easily formulated to allow for unstructured meshes. The method is used in 

many computational fluid dynamics packages. 

 

 

https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Divergence
https://en.wikipedia.org/wiki/Surface_integral
https://en.wikipedia.org/wiki/Divergence_theorem
https://en.wikipedia.org/wiki/Conservation_law_(physics)
https://en.wikipedia.org/wiki/Computational_fluid_dynamics


4

Finite-Volume Methods

Finite-volume methods (FVM) – sometimes also called box methods – are
mainly employed for the numerical solution of problems in fluid mechanics,
where they were introduced in the 1970s by McDonald, MacCormack, and
Paullay. However, the application of the FVM is not limited to flow prob-
lems. An important property of finite-volume methods is that the balance
principles, which are the basis for the mathematical modelling of continuum
mechanical problems, per definition, also are fulfilled for the discrete equations
(conservativity). In this chapter we will discuss the most important basics of
finite-volume discretizations applied to continuum mechanical problems. For
clarity in the presentation of the essential principles we will restrict ourselves
mainly to the two-dimensional case.

4.1 General Methodology

In general, the FVM involves the following steps:

(1) Decomposition of the problem domain into control volumes.
(2) Formulation of integral balance equations for each control volume.
(3) Approximation of integrals by numerical integration.
(4) Approximation of function values and derivatives by interpolation with

nodal values.
(5) Assembling and solution of discrete algebraic system.

In the following we will outline in detail the individual steps (the solution of
algebraic systems will be the topic of Chap. 7). We will do this by example
for the general stationary transport equation (see Sect. 2.3.2)

∂

∂xi

(

ρviφ − α
∂φ

∂xi

)

= f (4.1)
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78 4 Finite-Volume Methods

for some problem domain Ω. We remark that a generalization of the FVM to
other types of equations as given in Chap. 2 is straightforward (in Chap. 10
this will be done for the Navier-Stokes equations).

The starting point for a finite-volume discretization is a decomposition of
the problem domain Ω into a finite number of subdomains Vi (i = 1, . . . , N),
called control volumes (CVs), and related nodes where the unknown variables
are to be computed. The union of all CVs should cover the whole problem
domain. In general, the CVs also may overlap, but since this results in un-
necessary complications we consider here the non-overlapping case only. Since
finally each CV gives one equation for computing the nodal values, their final
number (i.e., after the incorporation of boundary conditions) should be equal
to the number of CVs. Usually, the CVs and the nodes are defined on the
basis of a numerical grid, which, for instance, is generated with one of the
techniques described in Chap. 3. In order to keep the usual terminology of
the FVM, we always talk of volumes (and their surfaces), although strictly
speaking this is only correct for the three-dimensional case.

For one-dimensional problems the CVs are subintervals of the problem
interval and the nodes can be the midpoints or the edges of the subintervals
(see Fig. 4.1).

✲✛ CV Nodes

Fig. 4.1. Definitions of CVs and
edge (top) and cell-oriented (bot-
tom) arrangement of nodes for
one-dimensional grids

In the two-dimensional case, in principle, the CVs can be arbitrary poly-
gons. For quadrilateral grids the CVs usually are chosen identically with the
grid cells. The nodes can be defined as the vertices or the centers of the CVs
(see Fig. 4.2), often called edge or cell-centered approaches, respectively. For
triangular grids, in principle, one could do it similarily, i.e., the triangles define
the CVs and the nodes can be the vertices or the centers of the triangles. How-
ever, in this case other CV definitions are usually employed. One approach is
closely related to the Delaunay triangulation discussed in Sect. 3.4.2. Here, the
nodes are chosen as the vertices of the triangles and the CVs are defined as the
polygons formed by the perpendicular bisectors of the sides of the surrounding
triangles (see Fig. 4.3). These polygons are known as Voronoi polygons and
in the case of convex problems domains and non-obtuse triangles there is a
one-to-one correspondance to a Delaunay triangulation with its “nice” prop-
erties. However, this approach may fail for arbitrary triangulations. Another
more general approach is to define a polygonal CV by joining the centroids
and the midpoints of the edges of the triangles surrounding a node leading to
the so-called Donald polygons (see Fig. 4.4).

AERONAUTICAL ENGINEERING  MRCET (UGC Autonomous)

III  I B. Tech R15A2119  COMPUTATIONAL AERODYNAMICS By J Sandeep



4.1 General Methodology 79

CVs

Nodes

Fig. 4.2. Edge-oriented
(left) and cell-oriented
(right) arrangements of
nodes for quadrilateral grids

CV

Node

Fig. 4.3. Definition of CVs and nodes for tri-
angular grids with Voronoi polygons

CV

Node

Fig. 4.4. Definition of CVs and nodes for tri-
angular grids with Donald polygons

For three-dimensional problems on the basis of hexahedral or tetrahedral
grids similar techniques as in the two-dimensional case can be applied (see,
e.g., [26]).

After having defined the CVs, the balance equations describing the prob-
lem are formulated in integral form for each CV. Normally, these equations are
directly available from the corresponding continuum mechanical conservation
laws (applied to a CV), but they can also be derived by integration from the
corresponding differential equations. By integration of (4.1) over an arbitrary
control volume V and application of the Gauß integral theorem, one obtains:

∫

S

(

ρviφ − α
∂φ

∂xi

)

ni dS =

∫

V

f dV , (4.2)
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where S is the surface of the CV and ni are the components of the unit
normal vector to the surface. The integral balance equation (4.2) constitutes
the starting point for the further discretization of the considered problem with
an FVM.

As an example we consider quadrilateral CVs with a cell-oriented arrange-
ment of nodes (a generalization to arbitrary polygons poses no principal dif-
ficulties). For a general quadrilateral CV we use the notations of the distin-
guished points (midpoint, midpoints of faces, and edge points) and the unit
normal vectors according to the so-called compass notation as indicated in
Fig. 4.5. The midpoints of the directly neighboring CVs we denote – again in
compass notation – with capital letters S, SE, etc. (see Fig. 4.6).

✲
x1, x

✻x2, y

■

✌

❫

✗

s

w
e

n

V

S

se

ne

sw

nw

P

ne

nw

nn

ns
Fig. 4.5. Quadrilateral control
volume with notations

P

E

N

W

S

NE

SE

NW

SW

Fig. 4.6. Notations for neighbor-
ing control volumes

The surface integral in (4.2) can be split into the sum of the four surface
integrals over the cell faces Sc (c = e,w,n, s) of the CV, such that the balance
equation (4.2) can be written equivalently in the form

∑

c

∫

Sc

(

ρviφ − α
∂φ

∂xi

)

nci dSc =

∫

V

f dV . (4.3)
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The expression (4.3) represents a balance equation for the convective and
diffusive fluxes FC

c and FD
c through the CV faces, respectively, with

FC
c =

∫

Sc

(ρviφ)nci dSc and FD
c = −

∫

Sc

(

α
∂φ

∂xi

)

nci dSc .

For the face Se, for instance, the unit normal vector ne = (ne1, ne2) is defined
by the following (geometric) conditions:

(xne − xse) · ne = 0 und |ne| =
√

n2
e1 + n2

e2 = 1 .

From this one obtains the representation

ne =
(yne − yse)

δSe

e1 −
(xne − xse)

δSe

e2 , (4.4)

where

δSe = |xne − xse| =
√

(xne − xse)2 + (yne − yse)2

denotes the length of the face Se. Analogous relations result for the other CV
faces.

For neighboring CVs with a common face the absolute value of the total
flux Fc = FC

c + FD
c through this face is identical, but the sign differs. For

instance, for the CV around point P the flux Fe is equal to the flux −Fw

for the CV around point E (since (ne)P = −(nw)E). This is exploited for the
implementation of the method in order to avoid on the one hand a double com-
putation for the fluxes and on the other hand to ensure that the corresponding
absolute fluxes really are equal (important for conservativity, see Sect. 8.1.4).
In the case of quadrilateral CVs the computation can be organized in such a
way that, starting from a CV face at the boundary of the problem domain,
for instance, only Fe und Fn have to be computed.

It should be noted that up to this point we haven’t introduced any ap-
proximation, i.e., the flux balance (4.3) is still exact. The actual discretization
now mainly consists in the approximation of the surface integrals and the vol-
ume integral in (4.3) by suitable averages of the corresponding integrands at
the CV faces. Afterwards, these have to be put into proper relation to the
unknown function values in the nodes.

4.2 Approximation of Surface and Volume Integrals

We start with the approximation of the surface integrals in (4.3), which for a
cell-centered variable arrangement suitably is carried out in two steps:

(1) Approximation of the surface integrals (fluxes) by values on the CV faces.
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(2) Approximation of the variable values at the CV faces by node values.

As an example let us consider the approximation of the surface integral

∫

Se

winei dSe

over the face Se of a CV for a general integrand function w = (w1(x), w2(x))
(the other faces can be treated in a completely analogous way).

The integral can be approximated in different ways by involving more or
less values of the integrand at the CV face. The simplest possibility is an
approximation by just using the midpoint of the face:

∫

Se

winei dSe ≈ ge δSe , (4.5)

where we denote with ge = weinei the normal component of w at the loca-
tion e. With this, one obtains an approximation of 2nd order (with respect to
the face length δSe) for the surface integral, which can be checked by means
of a Taylor series expansion (Exercise 4.1). The integration formula (4.5) cor-
responds to the midpoint rule known from numerical integration.

Other common integration formulas, that can be employed for such ap-
proximations are, for instance, the trapezoidal rule and the Simpson rule. The
corresponding formulas are summarized in Table 4.1 with their respective
orders (with respect to δSe).

Table 4.1. Approximations for surface integrals
over the face Se

Name Formula Order

Midpoint rule δSege 2
Trapezoidal rule δSe(gne + gse)/2 2
Simpson rule δSe(gne + 4ge + gse)/6 4

For instance, by applying the midpoint rule for the approximation of the
convective and diffusive fluxes through the CV faces in (4.3), we obtain the
approximations:

FC
c ≈ ρvinciδSc

︸ ︷︷ ︸

ṁc

φc and FD
c ≈ −αnciδSc

(
∂φ

∂xi

)

c

,

where, for simplicity, we have assumed that vi, ρ, and α are constant across
the CV. ṁc denotes the mass flux through the face Sc. Inserting the definition
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of the normal vector, we obtain, for instance, for the convective flux through
the face Se, the approximation

FC
e ≈ ṁeφe = ρ[v1(yne − yse) − v2(xne − xse)] .

Before we turn to the further discretization of the fluxes, we first deal
with the approximation of the volume integral in (4.3), which normally also is
carried out by means of numerical integration. The assumption that the value
fP of f in the CV center represents an average value over the CV leads to the
two-dimensional midpoint rule:

∫

V

f dV ≈ fP δV ,

where δV denotes the volume of the CV, which for a quadrilateral CV is given
by

δV =
1

2
|(xse − xnw)(yne − ysw) − (xne − xsw)(yse − ynw)| .

An overview of the most common two-dimensional integration formulas
for Cartesian CVs with the corresponding error order (with respect to δV ) is
given in Fig. 4.7 showing a schematical representation with the corresponding
location of integration points and weighting factors. As a formula this means,
e.g., in the case of the Simpson rule, an approximation of the form:

∫

V

f dV ≈ δV

36
(16fP + 4fe + 4fw + 4fn + 4fs + fne + fse + fne + fse) .

It should be noted that the formulas for the two-dimensional numerical inte-
gration can be used to approximate the surface integrals occurring in three-
dimensional applications. For three-dimensional volume integrals analogous
integration formulas as for the two-dimensional case are available.

In summary, by applying the midpoint rule (to which we will retrict
ourselves) we now have the following approximation for the balance equa-
tion (4.3):

∑

c

ṁcφc

︸ ︷︷ ︸

conv. fluxes

−
∑

c

αnci δSc

(
∂φ

∂xi

)

c
︸ ︷︷ ︸

diff. fluxes

= fP δV

︸ ︷︷ ︸

source

. (4.6)

In the next step it is necessary to approximate the function values and deriva-
tives of φ at the CV faces occurring in the convective and diffusive flux ex-
pressions, respectively, by variable values in the nodes (here the CV centers).
In order to clearly outline the essential principles, we will first explain the
corresponding approaches for a two-dimensional Cartesian CV as indicated in
Fig. 4.8. In this case the unit normal vectors nc along the CV faces are given
by
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Midpoint rule

Order 2

Trapezoidal rule

Order 2

Order 2

Simpson rule

Order 4

1

1/4

1/4

1/4

1/4

1/8

1/8 1/8

1/8

1/2

1/9

1/9 1/9

1/9

4/9

1/36

1/36

1/36

1/36

Fig. 4.7. Schematic representation of numerical integration formulas for two-
dimensional volume integrals over a Cartesian CV

ne = e1 , nw = −e1 , nn = e2 , ns = −e2

and the expressions for the mass fluxes through the CV faces simplify to

ṁe = ρv1(yn − ys) , ṁn = ρv2(xe − xw) ,
ṁw = ρv1(ys − yn) , ṁs = ρv2(xw − xe) .

Particularities that arise due to non-Cartesian grids will be considered in
Sect. 4.5.

4.3 Discretization of Convective Fluxes

For the further approximation of the convective fluxes FC
c , it is necessary

to approximate φc by variable values in the CV centers. In general, this in-
volves using neighboring nodal values φE, φP, . . . of φc. The methods most
frequently employed in practice for the approximation will be explained in
the following, where we can restrict ourselves to one-dimensional considera-
tions for the face Se, since the other faces and the second (or third) spatial
dimension can be treated in a fully analogous way. Traditionally, the corre-
sponding approximations are called differencing techniques, since they result
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✲
x1, x

✻
x2, y

xw xe

ys

yn

s

w e

n

P ✲✛

❄

✻

nenw

nn

ns

✲✛

✲✛ ✻

❄

✻

❄
δSs

δSn

δSw δSe

Fig. 4.8. Cartesian control volume
with notations

in formulas analogous to finite-difference methods. Strictly speaking, these are
interpolation techniques.

4.3.1 Central Differences

For the central differencing scheme (CDS) φe is approximated by linear inter-
polation with the values in the neighboring nodes P und E (see Fig. 4.9):

φe ≈ γeφE + (1 − γe)φP . (4.7)

The interpolation factor γe is defined by

γe =
xe − xP

xE − xP

.

The approximation (4.7) has, for an equidistant grid as well as for a non-
equidistant grid, an interpolation error of 2nd order. This can be seen from a
Taylor series expansion of φ around the point xP:

φ(x) = φP + (x − xP)

(
∂φ

∂x

)

P

+
(x − xP)2

2

(
∂2φ

∂x2

)

P

+ TH ,

where TH denotes the terms of higher order. Evaluating this series at the
locations xe and xE and taking the difference leads to the relation

φe = γeφE + (1 − γe)φP − (xe − xP)(xE − xe)

2

(
∂2φ

∂x2

)

P

+ TH ,

which shows that the leading error term depends quadratically on the grid
spacing.
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✲

✻

x

φ

P Ee

φP

φE

φe

Fig. 4.9. Approximation of φe

with CDS method

By involving additional grid points, central differencing schemes of higher
order can be defined. For instance, an approximation of 4th order for an
equidistant grid is given by

φe =
1

48
(−3φEE + 27φE + 27φP − 3φW) ,

where EE denotes the “east” neighboring point of E (see Fig. 4.11). Note that
an application of this formula only makes sense if it is used together with an
integration formula of 4th order, e.g., the Simpson rule. Only in this case is
the total approximation of the convective flux also of 4th order.

When using central differencing approximations unphysical oscillations
may appear in the numerical solution (the reasons for this problem will be
discussed in detail in Sect. 8.1). Therefore, one often uses so-called upwind
approximations, which are not sensitive or less sensitive to this problem. The
principal idea of these methods is to make the interpolation dependent on the
direction of the velocity vector. Doing so, one exploits the transport property
of convection processes, which means that the convective transport of φ only
takes place “downstream”. In the following we will discuss two of the most
important upwind techniques.

4.3.2 Upwind Techniques

The simplest upwind method results if φ is approximated by a step function.
Here, φe is determined depending on the direction of the mass flux as follows
(see Fig. 4.10):

φe = φP , if ṁe > 0 ,

φe = φE , if ṁe < 0 .

This method is called upwind differencing scheme (UDS). A Taylor series
expansion of φ around the point xP, evaluated at the point xe, gives:
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φe = φP + (xe − xP)

(
∂φ

∂x

)

P

+
(xe − xP)2

2

(
∂2φ

∂x2

)

P

+ TH .

This shows that the UDS method (independent of the grid) has an interpola-
tion error of 1st order. The leading error term in the resulting approximation
of the convective flux FC

e becomes

ṁe(xe − xP)
︸ ︷︷ ︸

αnum

(
∂φ

∂x

)

P

.

The error caused by this is called artificial or numerical diffusion, since the
error term can be interpreted as a diffusive flux. The coefficient αnum is a
measure for the amount of the numerical diffusion. If the transport direction
is nearly perpendicular to the CV face, the approximation of the convective
fluxes resulting with the UDS method is comparably good (the derivative
(∂φ/∂x)P is then small). Otherwise the approximation can be quite inaccurate
and for large mass fluxes (i.e., large velocities) it can then be necessary to
employ very fine grids (i.e., xe − xP very small) for the computation in order
to achieve a solution with an adequate accuracy. The disadvantage of the
relatively poor accuracy is confronted by the advantage that the UDS method
leads to an unconditionally bounded solution algorithm. We will discuss this
aspect in more detail in Sect. 8.1.5.

✲

✻

x

φ

P Ee

φP

φE

φe

φe

✲

✛
ṁe < 0

ṁe > 0

Fig. 4.10. Mass flux dependent
approximation of φe with UDS
method

An upwind approximation frequently employed in practice is the quadratic
upwind interpolation, which in the literature is known as the QUICK method
(Quadratic Upwind Interpolation for Convective Kinematics). Here, a quad-
ratic polynomial is fitted through the two neighboring points P and E, and a
third point, which is located upstream (W or EE depending on the flow direc-
tion). Evaluating this polynomial at point e one obtains the approximation
(see also Fig. 4.11):
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φe = a1φE − a2φW + (1 − a1 + a2)φP , if ṁe > 0 ,

φe = b1φP − b2φEE + (1 − b1 + b2)φE , if ṁe < 0 ,

where

a1 =
(2 − γw)γ2

e

1 + γe − γw

, a2 =
(1 − γe)(1 − γw)2

1 + γe − γw

,

b1 =
(1 + γw)(1 − γe)

2

1 + γee − γe

, b2 =
γ2
eeγe

1 + γee − γe

.

For an equidistant grid one has:

a1 =
3

8
, a2 =

1

8
, b1 =

3

8
, b2 =

1

8
.

In this case the QUICK method possesses an interpolation error of 3rd or-
der. However, if it is used together with numerical integration of only 2nd order
the overall flux approximation also is only of 2nd order, but it is somewhat
more accurate than with the CDS method.

✲

✻

x

φ

W P E EEe

φW

φP

φE φEE
φe

φe

✛✲ ṁe < 0

ṁe > 0

Fig. 4.11. Mass flux dependent approximation of φe with QUICK method

Before we turn to the discretization of the diffusive fluxes, we will point to
a special technique for the treatment of convective fluxes, which is frequently
employed for transport equations.

4.3.3 Flux-Blending Technique

The principal idea of flux-blending, which goes back to Khosla und Rubin
(1974), is to mix different approximations for the convective flux. In this way
one attempts to combine the advantages of an accurate approximation of a
higher order scheme with the better robustness and boundedness properties
of a lower order scheme (mostly the UDS method).

To explain the method we again consider exemplarily the face Se of a CV.
The corresponding approximations for φe in the convective flux FC

e for the
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two methods to be combined are denoted by φML
e and φMH

e , where ML and
MH are the lower and higher order methods, respectively. The approximation
for the combined method reads:

φe ≈ (1 − β)φML
e + βφMH

e = φML
e + β(φMH

e − φML
e )

︸ ︷︷ ︸

bφ,e
β

. (4.8)

From (4.8) for β=0 and β=1 the methods ML and MH, respectively, result.
However, it is possible to choose for β any other value between 0 and 1,
allowing to control the portions of the corresponding methods according to
the needs of the underlying problem. However, due to the loss in accuracy,
values β < 1 should be selected only if with β = 1 on the given grid no
“reasonable” solution can be obtained (see Sect. 8.1.5) and a finer grid is not
possible due to limitations in memory or computing time.

Also, if β = 1 (i.e., the higher order method) is employed, it can be be-

neficial to use the splitting according to (4.8) in order to treat the term bφ,e
β

“explicitly” in combination with an iterative solver. This means that this
term is computed with (known) values of φ from the preceding iteration and
added to the source term. This may lead to a more stable iterative solution
procedure, since this (probably critical) term then makes no contribution to
the system matrix, which becomes more diagonally dominant. It should be
pointed out that this modification has no influence on the converged solution,
which is identical to that obtained with the higher order method MH alone.
We will discuss this approach in some more detail at the end of Sect. 7.1.4.

4.4 Discretization of Diffusive Fluxes

For the approximation of diffusive fluxes it is necessary to approximate the
values of the normal derivative of φ at the CV faces by nodal values in the
CV centers. For the east face Se of the CV, which we will again consider
exemplarily, one has to approximate (in the Cartesian case) the derivative
(∂φ/∂x)e. For this, difference formulas as they are common in the framework
of the finite-difference method can be used (see, e.g., [9]).

The simplest approximation one obtains when using a central differencing
formula

(
∂φ

∂x

)

e

≈ φE − φP

xE − xP

, (4.9)

which is equivalent to the assumption that φ is a linear function between the
points xP and xE (see Fig. 4.12). For the discussion of the error of this ap-
proximation, we consider the difference of the Taylor series expansion around
xe at the locations xP and xE:
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(
∂φ

∂x

)

e

=
φE − φP

xE − xP

+
(xe − xP)2 − (xE − xe)

2

2(xE − xP)

(
∂2φ

∂x2

)

e

− (xe − xP)3 + (xE − xe)
3

6(xE − xP)

(
∂3φ

∂x3

)

e

+ TH .

One can observe that for an equidistant grid an error of 2nd order results,
since in this case the coefficient in front of the second derivative is zero. In
the case of non-equidistant grids, one obtains by a simple algebraic rearrange-
ment that this leading error term is proportional to the grid spacing and the
expansion rate ξe of neighboring grid spacings:

(1 − ξe)(xe − xP)

2

(
∂2φ

∂x2

)

e

with ξe =
xE − xe

xe − xP

.

This means that the portion of the 1st order error term gets larger the more
the expansion rate deviates from 1. This aspect should be taken into account
in the grid generation such that neighboring CVs do not differ that much in
the corresponding dimensions (see also Sect. 8.3).

✲

✻

x

φ
(

∂φ
∂x

)

e

φE − φP

xE − xP

P Ee

φP

φE

Fig. 4.12. Central differencing
formula for approximation of 1st
derivative at CV face

One obtains a 4th order approximation of the derivative at the CV face
for an equidistant grid by

(
∂φ

∂x

)

e

≈ 1

24∆x
(φW − 27φP + 27φE − φEE) , (4.10)

which, for instance, can be used together with the Simpson rule to obtain an
overall approximation for the diffusive flux of 4th order.

Although principally there are also other possibilities for approximating
the derivatives (e.g., forward or backward differencing formulas), in practice
almost only central differencing formulas are employed, which possess the
best accuracy for a given number of grid points involved in the discretization.
Problems with boundedness, as for the convective fluxes, do not exist. Thus,
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4.5 Non-Cartesian Grids 91

there is no reason to use less accurate approximations. For CVs located at the
boundary of the problem domain, it might be necessary to employ forward or
backward differencing formulas because there are no grid points beyond the
boundary (see Sect. 4.7).

4.5 Non-Cartesian Grids

The previous considerations with respect to the discretization of the convective
and diffusive fluxes were confined to the case of Cartesian grids. In this section
we will discuss necessary modifications for general (quadrilateral) CVs.

For the convective fluxes, simple generalizations of the schemes introduced
in Sect. 4.3 (e.g., UDS, CDS, QUICK, . . . ) can be employed for the approxi-
mation of φc. For instance, a corresponding CDS approximation for φe reads:

φe ≈
|xẽ − xP|
|xE − xP|

φE +
|xE − xẽ|
|xE − xP|

φP , (4.11)

where xẽ is the intersection of the connnecting line of the points P and E with
the (probably extended) CV face Se (see Fig. 4.13). For the convective flux
through Se this results in the following approximation:

FC
e ≈ ṁe

|xE − xP|
(|xẽ − xP|φE + |xE − xẽ|φP) .

When the grid at the corresponding face has a “kink”, an additional error
results because the points xẽ and xe do not coincide (see Fig. 4.13). This
aspect should be taken into account for the grid generation (see also Sect. 8.3).

✲x1

✻x2

e

ẽP
E

Fig. 4.13. Central difference approx-
imation of convective fluxes for non-
Cartesian control volumes

Let us turn to the approximation of the diffusive fluxes, for which farther
reaching distinctions to the Cartesian case arise as for the convective fluxes.
Here, for the required approximation of the normal derivative of φ in the
center of the CV face there are a variety of different possibilities, depending
on the directions in which the derivative is approximated, the locations where
the appearing derivatives are evaluated, and the node values which are used
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92 4 Finite-Volume Methods

for the interpolation. As an example we will give here one variant and consider
only the CV face Se.

Since along the normal direction in general there are no nodal points,
the normal derivative has to be expressed by derivatives along other suitable
directions. For this we use here the coordinates ξ̃ and η̃ defined according
to Fig. 4.14. The direction ξ̃ is determined by the connecting line between
points P and E, and the direction η̃ is determined by the direction of the CV
face. Note that ξ̃ and η̃, because of a distortion of the grid, can deviate from
the directions ξ und η, which are defined by the connecting lines of P with
the CV face centers e and n. The larger these deviations are, the larger the
discretization error becomes. This is another aspect that has to be taken into
account when generating the grid (see also Sect. 8.3).

✲x1, x

✻
x2, y

❫
ne

e

ẽ

n

se

neP

E

N
η

η̃

ξ

ξ̃
ψ Fig. 4.14. Approximation of dif-

fusive fluxes for non-Cartesian con-
trol volumes

A coordinate transformation (x, y) → (ξ̃, η̃) results for the normal deriva-
tive in the following representation:

∂φ

∂x
ne1+

∂φ

∂y
ne2 =

1

J

[(
∂y

∂η̃
ne1−

∂x

∂η̃
ne2

)
∂φ

∂ξ̃
+

(
∂x

∂ξ̃
ne2−

∂y

∂ξ̃
ne1

)
∂φ

∂η̃

]

(4.12)

with the Jacobi determinant

J =
∂x

∂ξ̃

∂y

∂η̃
− ∂y

∂ξ̃

∂x

∂η̃
.

The metric quantities can be approximated according to

∂x

∂ξ̃
≈ xE − xP

|xE − xP |
and

∂x

∂η̃
≈ xne − xse

δSe

, (4.13)

which results for the Jacobi determinant in the approximation

Je ≈
(xE − xP)(yne − yse) − (yE − yP)(xne − xse)

|xE − xP | δSe

= cos ψ ,
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4.5 Non-Cartesian Grids 93

where ψ denotes the angle between the direction ξ̃ and ne (see Fig. 4.14). ψ
is a measure for the deviation of the grid from orthogonality (ψ = 0 for an
orthogonal grid).

The derivatives with respect to ξ̃ and η̃ in (4.12) can be approximated
in the usual way with a finite-difference formula. For example, the use of a
central difference of 2nd order gives:

∂φ

∂ξ̃
≈ φE − φP

|xE − xP|
and

∂φ

∂η̃
≈ φne − φse

δSe

. (4.14)

Inserting the approximations (4.13) and (4.14) into (4.12) and using the com-
ponent representation (4.4) of the unit normal vector ne we finally obtain the
following approximation for the diffusive flux through the CV face Se:

FD
e ≈ De(φE − φP) + Ne(φne − φse) (4.15)

with

De =
α
[
(yne − yse)

2 + (xne − xse)
2
]

(xne − xse)(yE − yP) − (yne − yse)(xE − xP)
, (4.16)

Ne =
α [(yne − yse)(yE − yP) + (xne − xse)(xE − xP)]

(yne − yse)(xE − xP) − (xne − xse)(yE − yP)
. (4.17)

The coefficient Ne represents the portion that arise due to the non-orthogo-
nality of the grid. If the grid is orthogonal, ne and xE − xP have the same
direction such that Ne = 0. The coefficient Ne (and the corresponding values
for the other CV faces) should be kept as small as possible (see als Sect. 8.3).

The values for φne and φse in (4.15) can be approximated, for instance, by
linear interpolation of four neighboring nodal values:

φne =
γPφP + γEφE + γNφN + γNEφNE

γP + γE + γN + γNE

with suitable interpolation factors γP, γE, γN, and γNE (see Fig. 4.15).

neP

E

N

NE

Fig. 4.15. Interpolation of values in CV
edges for discretization of diffusive fluxes
for non-Cartesian CV
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94 4 Finite-Volume Methods

4.6 Discrete Transport Equation

Let us now return to our example of the general two-dimensional transport
equation (4.3) and apply the approximation techniques introduced in the pre-
ceding sections to it.

We employ exemplarily the midpoint rule for the integral approximations,
the UDS method for the convective flux, and the CDS method for the diffusive
flux. Additionally, we assume that we have velocity components v1, v2 > 0
and that the grid is a Cartesian one. With these assumptions one obtains the
following approximation of the balance equation (4.3):

(

ρv1φP − α
φE − φP

xE − xP

)

(yn − ys)

−
(

ρv1φW − α
φP − φW

xP − xW

)

(yn − ys)

+

(

ρv2φP − α
φN − φP

yN − yP

)

(xe − xw)

−
(

ρv2φS − α
φP − φS

yP − yS

)

(xe − xw) = fP(yn − ys)(xe − xw) .

A simple rearrangement gives a relation of the form

aPφP = aEφE + aWφW + aNφN + aSφS + bP (4.18)

with the coefficients

aE =
α

(xE − xP)(xe − xw)
,

aW =
ρv1

xe − xw

+
α

(xP − xW)(xe − xw)
,

aN =
α

(yN − yP )(yn − ys)
,

aS =
ρv2

yn − ys

+
α

(yP − yS)(yn − ys)
,

aP =
ρv1

xe − xw

+
α(xE − xW)

(xP − xW)(xE − xP)(xe − xw)
+

ρv2

yn − ys

+
α(yN − yS)

(yP − yS)(yN − yP)(yn − ys)
,

bP = fP .

If the grid is equidistant in each spatial direction (with grid spacings ∆x and
∆y), the coefficients become:

aE =
α

∆x2
, aW =

ρv1

∆x
+

α

∆x2
, aN =

α

∆y2
, aS =

ρv2

∆y
+

α

∆y2
,

aP =
ρv1

∆x
+

2α

∆x2
+

ρv2

∆y
+

2α

∆y2
, bP = fP .
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4.7 Treatment of Boundary Conditions 95

In this particular case (4.18) coincides with a discretization that would result
from a corresponding finite-difference method (for general grids this normally
is not the case).

It can be seen that – independent from the grid employed – one has for
the coefficients in (4.18) the relation

aP = aE + aW + aN + aS .

This is characteristic for finite-volume discretizations and expresses the con-
servativity of the method. We will return to this important property in
Sect. 8.1.4.

Equation (4.18) is valid in this form for all CVs, which are not located
at the boundary of the problem domain. For boundary CVs the approxima-
tion (4.18) includes nodal values outside the problem domain, such that they
require a special treatment depending on the given type of boundary condi-
tion.

4.7 Treatment of Boundary Conditions

We consider the three boundary condition types that most frequently oc-
cur for the considered type of problems (see Chap. 2): a prescibed variable
value, a prescibed flux, and a symmetry boundary. For an explanation of the
implementation of such conditions into a finite-volume method, we consider
as an example a Cartesian CV at the west boundary (see Fig. 4.16) for the
transport equation (4.3). Correspondingly modified approaches for the non-
Cartesian case or for other types of equations can be formulated analogously
(for this see also Sect. 10.4).

Let us start with the case of a prescribed boundary value φw = φ0. For
the convective flux at the boundary one has the approximation:

FC
w ≈ ṁwφw = ṁwφ0 .

With this the approximation of FC
w is known (the mass flux ṁw at the bound-

ary is also known) and can simply be introduced in the balance equation (4.6).
This results in an additional contribution to the source term bP.

The diffusive flux through the boundary is determined with the same ap-
proach as in the interior of the domain (see (4.18)). Analogously to (4.9) the
derivative at the boundary can be approximated as follows:

(
∂φ

∂x

)

w

≈ φP − φw

xP − xw

=
φP − φ0

xP − xw

. (4.19)

This corresponds to a forward difference formula of 1st order. Of course, it is
also possible to apply more elaborate formulas of higher order. However, since
the distance between the boundary point w and the point P is smaller than
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96 4 Finite-Volume Methods

the distance between two inner points (half as much for an equidistant grid,
see Fig. 4.16), a lower order approximation at the boundary usually does not
influence the overall accuracy that much.

P E
ew

N

n

S
s

Fig. 4.16. Cartesian boundary CV at west boundary
with notations

In summary, one has for the considered boundary CV a relation of the
form (4.18) with the modified coefficients:

aW = 0 ,

aP =
ρv1

xe − xw

+
α(xE − xw)

(xP − xw)(xE − xP)(xe − xw)
+

ρv2

yn − ys

+
α(yN − yS)

(yP − yS)(yN − yP)(yn − ys)
,

bP = fP +

[
ρv1

xe − xw

+
α

(xP − xw)(xe − xw)

]

φ0.

All other coefficients are computed as for a CV in the interior of the problem
domain.

Let us now consider the case where the flux Fw = F 0 is prescribed at
the west boundary. The flux through the CV face is obtained by dividing F 0

through the length of the face xe−xw. The resulting value is introduced in (4.6)
as total flux and the modified coefficients for the boundary CV become:

aW = 0 ,

aP =
ρv1

xe − xw

+
α

(xE − xP)(xe − xw)
+

ρv2

yn − ys

+
α(yN − yS)

(yP − yS)(yN − yP)(yn − ys)
,

bP = fP +
F 0

xe − xw

.

All other coefficients remain unchanged.
Sometimes it is possible to exploit symmetries of a problem in order to

downsize the problem domain to save computing time or get a higher accuracy
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(with a finer grid) with the same computational effort. In such cases one has
to consider symmetry planes or symmetry lines at the corresponding problem
boundary. In this case one has the boundary condition:

∂φ

∂xi

ni = 0 . (4.20)

From this condition it follows that the diffusive flux through the symmetry
boundary is zero (see (4.18)). Since also the normal component of the velocity
vector has to be zero at a symmetry boundary (i.e., vini = 0), the mass flux
and, therefore, the convective flux through the boundary is zero. Thus, in the
balance equation (4.6) the total flux through the corresponding CV face can
be set to zero. For the boundary CV in Fig. 4.16 this results in the following
modified coefficients:

aW = 0 ,

aP =
ρv1

xe − xw

+
α

(xE − xP)(xe − xw)
+

ρv2

yn − ys

+
α(yN − yS)

(yP − yS)(yN − yP)(yn − ys)
.

If required, the (unknown) variable value at the boundary can be determined
by a finite-difference approximation of the boundary condition (4.20). In the
considered case, for instance, with a forward difference formula (cp. (4.19))
one simply obtains φw = φP.

As with all other discretization techniques, the algebraic system of equa-
tions resulting from a finite-volume discretization has a unique solution only
if the boundary conditions at all boundaries of the problem domain are taken
into account (e.g., as outlined above). Otherwise there would be more un-
knowns than equations.

4.8 Algebraic System of Equations

As exemplarily outlined in Sect. 4.6 for the general scalar transport equation,
a finite-volume discretization for each CV results in an algebraic equation of
the form:

aPφP −
∑

c

acφc = bP ,

where the index c runs over all neighboring points that are involved in the
approximation as a result of the discretization scheme employed. Globally, i.e.,
for all control volumes Vi (i = 1, . . . , N) of the problem domain, this gives a
linear system of N equations
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ai
Pφi

P −
∑

c

ai
cφ

i
c = bi

P for all i = 1, . . . , N (4.21)

for the N unknown nodal values φi
P in the CV centers.

After introducing a corresponding numbering of the CVs (or nodal values),
in the case of a Cartesian grid the system (4.21) has a fully analogous structure
that also would result from a finite-difference approximation. To illustrate
this, we consider first the one-dimensional case. Let the problem domain be
the interval [0, L], which we divide into N not necessarily equidistant CVs
(subintervals) (see Fig 4.17).

✲ x
φ1

P · · · φi−1

P
φi

P φi+1

P
· · · φN

P

W w P e E0 L

Fig. 4.17. Arrangement of CVs and nodes for 1-D transport problem

Using the second-order central differencing scheme, the discrete equations
have the form:

ai
Pφi

P − ai
Eφi

E − ai
Wφi

W = bi
P . (4.22)

With the usual lexicographical numbering of the nodal values as given in
Fig. 4.17 one has:

φi
W = φi−1

P
for all i = 2, . . . , N ,

φi
E = φi+1

P
for all i = 1, . . . , N − 1 .

Thus, the result is a linear system of equations which can be represented in
matrix form as follows:



















a1
P −a1

E

−a2
W a2

P −a2
E 0

· · ·
−ai

W ai
P −ai

E

· · ·
0 · · −aN−1

E

−aN
W aN

P



















︸ ︷︷ ︸

A



















φ1
P

·
φi−1

P

φi
P

φi+1

P

·
φN

P



















︸ ︷︷ ︸

φ

=



















b1
P

b2
P

·
bi
P

·
·

bN
P



















︸ ︷︷ ︸

b

.

When using a QUICK discretization or a central differencing scheme of
4th order, there are also coefficients for the farther points EE and WW (see
Fig. 4.18):
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4.8 Algebraic System of Equations 99

aPφP − aEEφEE − aEφE − aWφW − aWWφWW = bP , (4.23)

i.e., in the corresponding coefficient matrix A two additional non-zero diago-
nals appear:

A =

























a1
P −a1

E −a1
EE

−a2
W a2

P −a2
E −a2

EE 0

−a3
WW −a3

W a3
P −a3

E −a3
EE

· · · · ·
−ai

WW −ai
W ai

P −ai
E −ai

EE

· · · · ·
· · · · −aN−2

EE

0 · · · −aN−1

E

−aN
WW −aN

W aN
P

























.

· · · φi−2

P
φi−1

P
φi

P φi+1

P
φi+2

P
· · ·

WW W w P e E EE

Fig. 4.18. CV dependencies with higher order scheme for 1-D transport problem

For the two- and three-dimensional cases fully analogous considerations
can be made for the assembly of the discrete equation systems. For a two-
dimensional rectangular domain with N × M CVs (see Fig. 4.19), we have,
for instance, in the case of the discretization given in Sect. 4.6 equations of
the form

ai,j
P

φi,j
P

− ai,j
E

φi,j
E

− ai,j
W

φi,j
W

− ai,j
S

φi,j
S

− ai,j
N

φi,j
N

= bi,j
P

for i=1, . . . , N and j =1, . . . , M . In the case of a lexicographical columnwise
numbering of the nodal values (index j is counted up first) and a corresponding
arrangement of the unknown variables φi,j

P
(see Fig. 4.19), the system matrix

A takes the following form:
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A =




























a1,1
P

−a1,1
N · 0 · −a1,1

E

−a1,2
S

· · · 0

· · · · ·
0 · · · ·

· · · · −aN−1,M
E

−a2,1
W

· · · ·
· · · · 0

· · · · ·

0 · · · −aN,M−1

N

−aN,M
W

· 0 · −aN,M
S

aN,M
P




























.

M+1

M

...

j

...

1

0
0 1 · · · i · · · N N+1

φi+1,j

P
φi−1,j

P
φi,j

P

φi,j−1

P

φi,j+1

P

Fig. 4.19. Arrangement
of CVs and nodes for 2-D
transport problem

As outlined in Sect. 4.5, due to the discretization of the diffusive fluxes, in
the non-Cartesian case additional coefficients can arise, whereby the number
of non-zero diagonals in the system matrix increases. Using the discretization
exemplarily given in Sect. 4.5, for instance, one would have additional depen-
dencies with the points NE, NW, SE, and SW, which are required to linearly
interpolate the values of φ in the vertices of the CV (see Fig. 4.20). Thus, in
the case of a structured grid a matrix with 9 non-zero diagonals would result.

4.9 Numerical Example

As a concrete, simple (two-dimensional) example for the application of the
FVM, we consider the computation of the heat transfer in a trapezoidal plate
(density ρ, heat conductivity κ) with a constant heat source q all over the
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4.9 Numerical Example 101

P

E

N

W

S

NE

SE

NW

SW

Fig. 4.20. Interpolation of vertice
values for non-Cartesian CV

plate. At three sides the temperature T is prescribed and at the fourth side
the heat flux is given (equal to zero). The problem data are summarized in
Fig. 4.21. The problem is described by the heat conduction equation

−κ
∂2T

∂x2
− κ

∂2T

∂y2
= ρq (4.24)

with the boundary conditions as indicated in Fig. 4.21 (cp. Sect. 2.3.2). For the
discretization we employ a grid with only two CVs as illustrated in Fig. 4.22.
The required coordinates for the distinguished points for both CVs are indi-
cated in Table 4.2.

✲
x

✻y

✲✛
L1 = 12

✲✛L2 = 2 ✲✛ L3 = 6

✻

❄

H = 4
ρ = 1 kg/m3

q = 8Nm/skg

κ = 2 N/Ks

T = 0

T = 20

T =
5

16
y3

∂T

∂x
+

∂T

∂y
= 0

Fig. 4.21. Configuration of trapezoidal plate heat conduction example (temperature
in K, length in m)

The integration of (4.24) over a control volume V and the application of
the Gauß integral theorem gives:

∑

c

Fc = −κ
∑

c

∫

Sc

(
∂T

∂x
n1 +

∂T

∂y
n2

)

dSc =

∫

V

q dV ,
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✲x

✻y

P1 P2

CV1 CV2

Fig. 4.22. CV definition for trapezoidal
plate

Table 4.2. Coordinates of distin-
guished points for discretized trape-
zoidal plate

CV1 CV2
Point x y x y

P 13/4 2 31/4 2
e 11/2 2 10 2
w 1 2 11/2 2
n 7/2 4 13/2 4
s 3 0 9 0
nw 2 4 5 4
ne 5 4 8 4
se 6 0 12 0
sw 0 0 6 0

Volume 18 18

where the summation has to be carried out over c = s,n,w, e. For the ap-
proximation of the integrals we employ the midpoint rule and the derivatives
at CV faces are approximated by second-order central differences. Thus, the
approximations of the fluxes for CV1 is:

Fe = −κ

∫

Se

(
4√
17

∂T

∂x
+

1√
17

∂T

∂y

)

dSe ≈

≈ De (TE − TP) + Ne(Tne − Tse) = −17

9
(TE − TP) − 10 ,

Fw = −κ

∫

Sw

(

− 2√
5

∂T

∂x
+

1√
5

∂T

∂y

)

dSw =

= −κ

∫

Sw

(

− 2√
5

120

16
x2 +

1√
5

15

16
y2

)

dSw = 60 ,

Fs = −κ

∫

Ss

(

−∂T

∂y

)

dSs ≈ −κ

(
∂T

∂y

)

s

(xse − xsw) ≈

≈ −κ

(
TP − TS

yP − yS

)

(xse − xsw) = 6TP ,
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4.9 Numerical Example 103

Fn = −κ

∫

Sn

∂T

∂y
dSn ≈ −κ

(
∂T

∂y

)

n

(xne − xnw) ≈

≈ −κ

(
TN − TP

yN − yP

)

(xne − xnw) = 3TP − 60 .

The flux Fw has been computed exactly from the given boundary value func-
tion. Similarly, one obtains for CV2:

Fe = 0 , Fw ≈ 17

9
(TP − TW) + 10 , Fs ≈ 6TP , Fn ≈ 3TP − 60 .

For both CVs we have δV = 18, such that the following discrete balance
equations result:

98

9
TP − 17

9
TE = 154 and

98

9
TP − 17

9
TW = 194 .

We have TP = T1 and TE = T2 for CV1, and TP = T2 and TW = T1 for CV2.
This gives the linear system of equations

98T1 − 17T2 = 1386 and 98T2 − 17T1 = 1746

for the two unknown temperatures T1 and T2. Its solution gives T1 ≈ 17, 77
and T2 ≈ 20, 90.

Exercises for Chap. 4

Exercise 4.1. Determine the leading error terms for the one-dimensional
midpoint and trapezoidal rules by Taylor series expansion and compare the
results.

Exercise 4.2. Let the concentration of a pollutant φ = φ(x) in a chimney be
described by the differential equation

−3φ′ − 2φ′′ = x cos(πx) for 0 < x < 6

with the boundary conditions φ′(0)=1 and φ(6)=2. Compute the values φ1

and φ2 in the centers of the two control volumes CV1 = [0, 4] and CV2 = [4, 6]
with a finite-volume discretization using the UDS method for the convective
term.

Exercise 4.3. Consider the heat conduction in a square plate with the prob-
lem data given in Fig. 4.23. Compute the solution with a finite-volume method
for the two grids illustarted in Fig. 4.24. Compare the results with the analytic
solution Ta(x, y) = 20 − 2y2 + x3y − xy3.
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✲ x

✻

y

✲✛ 2 m ✻

❄

2 m
ρ = 1 kg/m3

q = 8 Nm/skg

κ = 2 N/Ks

T = 20

T = 12 − 8x + 2x3

κ
∂T

∂x
= −2y3

κ
∂T

∂x
= 24y − 2y3

Fig. 4.23. Problem def-
inition for Exercise 4.3
(temperatures in K)

✲x

✻y

P1

P3

P2

P4

0 1 2
0

1

2

✲x

✻y

P1

P3

P2

P4

0 3/2 2
0

3/2

2

Fig. 4.24. Numerical grids for Exercise 4.3

Exercise 4.4. Formulate a finite-volume method of 2nd order for equidis-
tant grids for the bar equation (2.38). Use this for computing the displace-
ment of a bar of length L = 60m with the boundary conditions (2.39) with
A(x) = 1 + x/60, u0 = 0, and kL = 4N employing a discretization with three
equidistant CVs.

Exercise 4.5. Formulate a finite-volume method of 4th order for the mem-
brane equation (2.17) for an equidistant Cartesian grid.

Exercise 4.6. Consider the integral

I =

∫

Se

φdS

for the function φ = φ(x, y) over the face Se of the CV [1, 3]2. (i) Determine
the leading error term and the order (with respect to the length ∆y of Se) for
the approximation

I ≈ φ(3, α)∆y
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4.9 Numerical Example 105

depending on the parameter α ∈ [1, 3]. (ii) Compute I for the function
φ(x, y) = x3y4 directly (analytically) and with the approximation defined
in (i) with α = 2. Compare the two solutions.

Exercise 4.7. The velocity vector of a two-dimensional flow is given by

v = (v1(x, y), v2(x, y)) = (x cos πy, x4y) .

Let the flux through the surface S of the control volume V = [1, 2]2 be defined
by

I =

∫

S

vini dS .

(i) Approximate the integral with the Simpson rule. (ii) Transform the in-
tegral with the Gauß integral theorem into a volume integral (over V) and
approximate this with the midpoint rule.
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